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Abstract

Four receptor-oriented source apportionment models were applied to personal exposure measurements for toxic

volatile organic compounds (VOCs). The measurements are from the total exposure assessment methodology studies

conducted from 1980 to 1984 in New Jersey (NJ) and California (CA) and the 1987–1990 CA Indoor Exposure study.

The receptor models applied are the Chemical Mass Balance model, Principal Component Analysis/Absolute Principal

Component Scores, Positive Matrix Factorization, and Graphical Ratio Analysis for Composition Estimates/Source

Apportionment by Factors with Explicit Restriction. Major sources of personal exposure to toxic VOCs appear to have

been aromatic sources resembling automobile exhaust, gasoline vapor, or environmental tobacco smoke, and a 1,1,1-

trichloroethane-dominated source that may be associated with solvent or pesticide use. Drycleaning chemicals,

deodorizers or mothballs, and building materials or carpet emissions also appear to have been significant sources of

exposure. Source apportionment results from the four models agreed reasonably well for the NJ data. The performance

of the models was generally poorer for the CA data, and the corresponding source apportionment results were less

consistent across the models. r 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Hazardous air pollutants; Air toxics; Source attribution

1. Introduction

The majority of toxic volatile organic compounds

(VOCs) in ambient air originate from sources that emit

to the outdoors, such as motor vehicles (EPA, 2000). It

is unclear, however, whether these outdoor sources are

the predominant contributors to human exposure to

toxic VOCs. Instead, personal activities and indoor

sources may be the dominant sources of exposure for

many compounds (Wallace, 1991).

Due to the variety and variability of sources involved,

it may be more practical to estimate source contribu-

tions to toxic VOC exposures using receptor models,

rather than emission-based models (Miller et al., 2001).

Receptor modeling has been widely used for estimating

source contributions for outdoor air pollution. To our

knowledge, however, few studies have applied receptor

modeling to personal exposure data (Yakovleva et al.,

1999; Anderson et al., 2001).

The primary goals of this study were to identify

sources contributing to personal exposure concentra-

tions of toxic VOCs, and estimate the relative contribu-

tion of each source to total concentrations. Personal

exposure data from the US Environmental Protection

Agency’s (EPA) TEAM study and the California Air

Resources Board’s (CARB) California (CA) Indoor

Exposure study were analyzed. Four different receptor

models were applied to the data: Chemical Mass Balance

(CMB) version 7.0 (Watson et al., 1990a, b), Principal

Component Analysis/Absolute Principal Component
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Scores (PCA/APCS; Thurston and Spengler, 1985),

Positive Matrix Factorization (PMF; Paatero and

Tapper, 1994) and Graphical Ratio Analysis for

Composition Estimates/Source Apportionment by Fac-

tors with Explicit Restriction (GRACE/SAFER; Henry

et al., 1994), as incorporated in the UNMIX model

(version 2; Henry, 2000). In Part I of this paper, Miller

et al. (2002) applied these four models to a simulated

data set of VOC exposures. Anderson et al. (2001)

previously analyzed the TEAM and CARB data using

PMF. This study examines whether results similar to

those obtained with PMF are found using alternative

receptor models.

2. Data

Personal exposure data for residents in Elizabeth and

Bayonne, New Jersey (NJ) were accessed from the Total

Human Exposure Risk database and Advanced Simula-

tion Environment, version 1.2 (Pandian et al., 1989;

NERL, 2000). This database includes data from the

main TEAM studies, which measured 24-h exposures of

600 people in NJ, CA, North Dakota and North

Carolina (NC) to various toxic chemicals in air and

drinking water. Data for residents of Los Angeles,

Pittsburgh, and Antioch, CA were accessed from the

Californian Exposures Database (CED) (Clayton and

Perritt, 1993). The CARB studies were carried out using

the same general procedures as the TEAM studies.

Exposures were measured using personal monitors,

which collected two 12-h samples, representing over-

night and daytime exposures. More information on

these studies is provided elsewhere (Pandian et al., 1989;

Clayton and Perritt, 1993; Wallace, 1987). A summary

of the measured personal exposure concentrations is

presented in Table 1. For this analysis, data were

combined across study locations within each state and

across seasons. The influence on source apportionment

results of geographic and seasonal variations in the data

was examined by Anderson et al. (2001). PMF and

CMB results for outdoor data from the TEAM and

CARB studies are presented in Anderson et al. (2001)

and Anderson (2001).

Compounds and participants were included in this

analysis only if more than 60% of the corresponding

concentrations were reported. Missing values were filled

in using the median value for the compound across all

participants. Table 1 shows that relatively few data

points were missing after compounds and participants

not meeting the 60% completeness criterion were

excluded. To decrease the effect of outliers on the

results, only participants with total exposure concentra-

tions below 2000mg/m3 were included in the NJ data set,

excluding 4% of the participants. This cutoff concentra-

tion was an obvious divider between the most extreme

concentrations and the remaining values. In the CA

data, only one participant had a total exposure

concentration above 2000 mg/m3, so all participants

were included in the CA analysis.

Table 1

Integrated 24-h personal exposure concentrations (mg/m3) of compounds included in this study

Compound (abbreviation) NJ data CA data

No. Obs. GM (GSD) No. Obs. GM (GSD)

Benzene (BNZ)a 506 12 (4.1) 296 9.7 (2.1)

Carbon tetrachloride (TET)a 505 1.4 (2.6) 299 0.73 (1.7)

Chlorobenzene (CBZ)a 507 0.33 (2.2) 287 0.063 (2.2)

Chloroform (CFM)a 506 2.9 (3.7) 298 0.70 (4.1)

1,2-Dichlorobenzene (ODB) 507 0.35 (2.8) — —

1,4-Dichlorobenzene (PDB)a 506 5.4 (5.7) — —

1,2-Dichloroethane (DCA) 507 0.54 (2.7) 283 0.15 (2.5)

Ethylbenzene (EBZ)a 506 7.4 (2.9) 304 5.1 (2.6)

n-Octane (OCT) — — 302 3.3 (2.3)

Styrene (STR)a 507 2.0 (2.7) 301 1.6 (2.9)

Tetrachloroethylene (PRC)a 508 7.8 (3.2) 291 4.9 (3.3)

1,1,1-Trichloroethane (TCA) 501 16 (3.9) 305 18 (3.4)

Trichloroethylene (TCE)a 508 3.1 (3.4) 298 1.1 (6.2)

o-Xylene (OXY)a 506 6.8 (2.6) 305 6.5 (2.7)

m,p-Xylene (MPX)a 507 19 (2.8) 305 17 (2.3)

n-Decane (DEC) — — 295 2.2 (3.2)

n-Dodecane (DOD) — — 288 1.3 (3.1)

n-Undecane (UND) — — 295 2.3 (3.1)

a-Pinene (PIN) — — 301 2.2 (3.0)

aOn current federal HAPs list.
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3. Models

PCA/APCS, PMF, and UNMIX were applied to the

NJ and CA data to estimate source profiles and

contributions. CMB was used to estimate source

contributions, using profiles that were input to the

model. Miller et al. (2002) provide a brief description of

each model. Details that are specific to this application

are discussed below.

CMB uses the chemical composition of receptor

concentrations to estimate the contributions of different

sources using weighted least-squares linear regression

(Watson et al., 1990a, b). The model input consists of

chemical composition profiles for likely sources. The

user determines the best number and combination of

source profiles to fit the data based on goodness of fit

measures, including R2 and w2 values, and the ratio of

calculated to actual total concentrations (% mass).

Different source profiles can be selected to optimally fit

the exposure data for each individual participant. Here,

however, a single set of profiles was selected that best fit

the data overall. A total of 28 relevant source profiles

and associated error estimates were compiled and tested

in the CMB model (Anderson, 2001). The subsets of

these profiles that gave the best fits to the CA and NJ

data are shown in the results section. Although source

profiles for the locations and dates of the TEAM studies

were not available, the profiles used generally represent

emissions in the 1980s and early 1990s. Some of the

profiles compiled were measured at the point of

exposure and some were emission profiles. Ideally,

exposure profiles that take aging and chemical degrada-

tion into account would be available for all sources.

Anderson (2001) documents the full set of profiles tested

with the CMB model.

In PCA, the matrix of pairwise correlations among

compound concentrations is decomposed into eigenvec-

tors, which are then sorted by descending order of the

corresponding eigenvalues. In this study, eigenvectors

were carried through the analysis if the associated

eigenvalues were close to or >1. Varimax rotation was

applied to these eigenvectors. Because factor scores

given by PCA are correlated with but not proportional

to source contributions, quantitative estimates of source

contributions and profiles associated with each factor

are derived by calculating APCS and then regressing the

total VOC concentrations on these scores (Thurston and

Spengler, 1985). PCA is based on the correlation

structure of the observations, and so cannot reliably

handle missing data. In this study, however, PCA was

applied to the same data set as the other methods,

because only a small number of missing observations

had to be filled in.

PMF, another multivariate method, solves a con-

strained, weighted least-squares optimization problem

to factor a data set into profile and factor score matrices.

The number of factors in the solution is chosen by the

user. Error estimates for each observation are used in

the weighted least-squares solution to downweight less

reliable data. The error model described by Miller et al.

(2002) was used in this study, except that for observa-

tions that were filled in, the error was set to two times

the median value of the compound. The number of

factors in the PMF model was chosen based on the

normalized sum of squares of the errors in individual

species concentrations (Q-value), the distribution of

normalized residuals for individual compounds, and the

results of a linear regression analysis of the factor scores

versus the sum of the measured VOC concentrations, in

which we sought to avoid negative regression coeffi-

cients and to optimize the R2 and %mass metrics for the

regression (Anderson et al., 2001). The recommenda-

tions of Paatero and Tapper (1994) were followed for

the rotational freedom (FPEAK=0), outlier threshold

distance (a ¼ 4:0) and choice of the robust solution

mode.

The GRACE/SAFER method, incorporated in the

UNMIX model, obtains source compositions by a

combination of graphical analysis and multivariate

receptor modeling (Henry and Kim, 1990). The model

includes physical constraints, such as non-negativity of

source compositions and contributions, as an integral

part of the factor profile derivation procedure. The user

specifies a tracer, which is a compound contributed

predominantly by one source, and the number of

factors. Solutions were attempted with subsets of

compounds, different tracers and different numbers

of factors until a feasible solution was found that

optimized model performance. The optimal number

of factors was chosen based on the minimum R2 value

for any single compound (MinR2) and the minimum

signal-to-noise ratio for any compound (Min S/N)

(Henry, 2000). Ultimately, eight compounds were

included in the solution for NJ and nine compounds in

the solution for CA, with tetrachloroethylene designated

as the tracer in both cases. The filter parameters that

determine how stringently the non-negativity constraint

is applied and the parameters that downweight extreme

values were set to the same values used by Miller et al.

(2002).

Applying UNMIX to the full data sets for NJ and CA

did not produce meaningful factors, due to outliers. To

identify possible outliers, concentrations of each com-

pound were plotted against concentrations of TCA, one

of the most dominant and variable compounds in the

data sets. In this way, one outlier was identified and

removed from the CA data set. Due to the variability of

the NJ data set, locating outliers using this approach

was difficult. Therefore the NJ data were trimmed to

exclude participants if the natural logarithm of their

total exposure concentration was more than 72s
(standard deviations) of the mean natural logarithm.
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About 5% of the participants were thus excluded, with

UNMIX applied to the data for the 482 remaining

participants.

4. Results

Source apportionment was performed for the NJ and

CA personal exposure data sets using CMB, PCA/

APCS, PMF, and UNMIX. Factor profiles from each

model are presented in Figs. 1–4 for NJ and Figs. 5–8

for CA. The profiles shown for the CMB model are

input to the analysis, so the CMB figures also include

profile names and references. The height of the bars in

these figures represents the compound’s mass fraction in

the factor. The error bars shown for the PMF and

UNMIX factors represent 71s errors in the profiles, as

output by each model. Error bars on the CMB results

represent 71s of variability in the measured input

profiles, as reported in the references. Error estimates for

APCS factor profiles were not calculated. Summary

performance measures provided by each model are given

in the figure captions. Anderson (2001) presents addi-

tional performance measures for the PMF and CMB

models.

With CMB (Fig. 1), six source profiles were judged to

best fit the NJ personal exposure data, resulting in an

average R2 value of 0.82, across all participants.

Performance measures for individual compounds given

in Anderson (2001) indicate that the CMB model
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Fig. 1. CMB input source profiles (mass fractions) that best fit the NJ personal exposures (n ¼ 508) with average and standard

deviation of source contribution estimates (SCE) across all participants. Average and standard deviation of performance statistics

across participants: R2 ¼ 0:8270:13; w2 ¼ 4:073:6; % mass=90%736%.
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overpredicts BNZ and TET by more than a factor of

two, on average. DCA is not included in any of the

source profiles used with CMB; hence, it is not fit at all.

Because measured DCA concentrations are low, this

omission does not significantly affect the model’s overall

performance. On average, modeled concentrations of
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Fig. 2. PMF factorization results (mass fractions) for NJ personal exposures (n ¼ 508). Performance statistics: R2 ¼ 0:97 and %

mass=105%712% for total VOC concentrations; Q ¼ 16305 for individual species concentrations.
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Fig. 3. UNMIX factorization results (mass fractions) for NJ personal exposures (n ¼ 482). TET, CBZ, CFM, ODB, DCA and STR

were omitted from the UNMIX model; spaces are left for them to aid comparison with the other models. Performance statistics:

MinR2 ¼ 0:88 for any species; Min S/N=2.46 for any species; % mass=99%713%.
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the other compounds are within a factor of two of the

measured concentrations.

Six factors were chosen as the optimal number for

both the PMF and UNMIX models (Figs. 2 and 3,

respectively). Eight compounds: BNZ, PDB, EBZ, PRC,

TCA, TCE, OXY and MPX were included in the

UNMIX solution. Detailed results for PMF (Anderson,

2001) indicate that more than 80% of the residuals were

within the 72s uncertainty bounds on the observed

values for all of the compounds except for CFM and

STR, for which 69% and 63% of the residuals,

respectively, fell within these limits. With UNMIX, the

minimum R2 value of 0.88 and minimum signal-to-noise

ratio of 2.5 are both above the respective thresholds of
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Fig. 4. PCA/APCS factorization results (mass fractions) for NJ personal exposures (n ¼ 508). Performance statistics: R2 ¼ 0:87 for

total VOC concentrations.
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Fig. 6. PMF factorization results (mass fractions) for the CA personal exposures (n ¼ 305). Performance statistics: R2 ¼ 0:98 and %

mass=100%711% for total VOC concentrations; Q ¼ 14351 for individual species concentrations.
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0.80 and 2.0 recommended for a good model (Henry,

2000).

Five factors were carried through the PCA/APCS

analysis of the NJ data (Fig. 4), accounting for 60% of

the variance in the exposure concentration data for

individual compounds. Inclusion of additional factors

resulted in unacceptably large negative values in the

factor profiles determined from APCS. The R2 value for

the regression of total VOC concentrations to the

absolute principal component scores was 0.87.

Table 2 compares source contribution estimates for

profiles estimated or used by the four models for NJ.

The average and standard deviation of source contribu-

tions across participants is shown. Results for similar
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Fig. 7. UNMIX factorization results (mass fractions) for the CA personal data (n ¼ 304). TET, CBZ, CFM, DCA, STR, TCE, DOD

and PIN were omitted from the UNMIX model; spaces are left for them to aid comparison with the other models. Performance

statistics: MinR2 ¼ 0:65 for any species; MinS/N=1.20 for any species; % mass=92%720%.
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profiles are lined up next to each other, with major

compounds present in the profiles indicated in the first

column. A blank entry indicates that no similar profile

was found for that model. Note that UNMIX results are

not expected to exactly match those from the other

models because it was applied to a trimmed data set.

For the NJ exposures, the largest source contributions

are from aromatics-dominated factors. The PMF,

UNMIX and PCA/APCS models all extract a factor

dominated by BNZ and a second factor with EBZ, OXY

and MPX. The first factor contributes an average of 21–

33% of the total VOC concentrations, depending on the

model, while the second factor contributes from 17% to

32%. The CMB model uses an automobile exhaust

profile that resembles a combination of the first and

second factors from the other models and contributes an

average of 43% to total VOC concentrations. The next

factor in all the model results is dominated by TCA, and

contributes from 19% to 28% of total VOC concentra-

tions. All four models included a PDB factor, which

contributes from 12% to 13% to the personal exposure

concentrations in NJ. The next two factors found by

PMF and UNMIX are dominated by TCE and PRC,

and contribute from 2% to 5% and from 9% to 12% to

personal exposures, respectively. The CMB model also

uses a PRC-dominated profile, which contributes 9%.

The final PCA/APCS profile resembles a combination of

the TCE and PRC profiles from PMF and UNMIX.

For the CA data, eight source profiles were used in the

CMB model, giving an average R2 value of 0.81 (Fig. 5).

Eight factors were chosen for the PMF model (Fig. 6)

and five for UNMIX (Fig. 7). Nine compounds: BNZ,

EBZ, OCT, PRC, TCA, OXY, MPX, DEC and UND

were included in the UNMIX solution. Three factors

were carried through the PCA/APCS model (Fig. 8)

accounting for 49% of the variance in the data.
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Although eigenvalues corresponding to three other

factors were close to 1.0, their inclusion in the APCS

calculation led to large negative values in the factor

profiles.

Based on the aggregate performance measures pro-

vided by each model and shown in the figure captions,

the overall performance of the PMF model was similar

for the CA and NJ data sets, but the other three models

performed worse for CA than for NJ. The high average

w2 value of 12 for the CA CMB application suggests that

concentrations of one or more species are not explained

well by the model. The more detailed results presented

by Anderson (2001) indicate that OCT is underestimated

by a factor of two, on average, and that TCE is

overestimated by almost a factor of three. Residuals

from PMF for BNZ, TET, DCA, OCT, STR and PRC

were within the 72s uncertainty limits for only about

70% of the observations, with residuals for the other

compounds within these limits for at least 80% of the

observations (Anderson, 2001). With UNMIX, the

minimum R2 value of 0.65 and minimum signal-to-noise

ratio of 1.2 are below the recommended values of 0.80

and 2.0, respectively. We were unable to improve

UNMIX’s performance for the CA data and still

produce meaningful factors. Finally, the R2 value for

the APCS model fit to total VOC exposure concentra-

tions in CA was 0.82, compared to 0.87 for NJ.

Table 3 compares source contribution estimates for

the CA data corresponding to the factors shown in

Figs. 5–8. The results are presented in the same format

as in Table 2. All the four models found or used a factor

that was dominated by BNZ, EBZ and xylenes. On

Table 2

Average source contribution estimates (SCE, %) for NJ personal exposure concentrations

Major compounds CMB PMF UNMIX PCA/APCS

Profile SCE Profile SCE Profile SCE Profile SCE

BNZ, EBZ, xylenes 1C 43714

BNZ 1P 21714 1U 29717 1PA 33728

EBZ, xylenes 2P 32719 2U 23717 2PA 17720

TCA 2C 19719 3P 20718 3U 22719 3PA 28725

PDB 3C 13720 4P 13721 4U 12719 4PA 13727

PRC 4C 9711 5P 9710 5U 12712

TCE 6P 578 6U 273

TCE, PRC 5PA 8715

TET, CFM, PRC, TCA, TCE 5C 15710

BNZ, CBZ 6C 273

Standard deviations representing variability across participants are shown.

Table 3

Average source contribution estimates (SCE, %) for CA personal exposure concentrations

Major compounds CMB PMF UNMIX PCA/APCS

Profile SCE Profile SCE Profile SCE Profile SCE

BNZ, EBZ, xylenes 1C 43719 1P 40717 1U 42724 1PA 50730

TCA 2C 272 2P 18715 2U 27717 2PA 44731

TCA, MPX, DEC, DOD, UND 3C 1179 3P 11713 3U 9713 3PAa 6728

PRC 4C 1279 4P 878 4U 12713

TCA, TCE, OXY, MPX, DOD, UND 5C 20719

TET, CFM, PRC, TCA, TCE 6C 575

DEC, UND 7C 6711

CBZ, MPX 8C 171

BNZ, OCT, OXY, MPX 5P 1176

CFM 6P 376

TCE 7P 479

PIN 8P 577

BNZ, OCT, xylenes 5U 10713

Standard deviations representing variability across participants are shown.
aAlso includes PRC as a major compound.
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average, this factor contributed from 42% to 50% of the

total exposure concentrations in CA. A second factor in

all the model results was dominated by TCA, but the

corresponding source contributions ranged from 2% for

the CMB model to 44% for PCA/APCS. Note that TCA

is also prominent in the indoor air profile (5C) used with

the CMB model, which contributes 20% to total VOC

concentrations. The relatively high PCA/APCS estimate

of the average TCA source contribution may have been

strongly influenced by a few very high TCA concentra-

tions. The outlier removed from the data for UNMIX,

which had a very high TCA concentration, was not

removed for the other models. Next, PMF, UNMIX and

CMB include a similar factor containing TCA, MPX

and alkanes that contribute 9–11% of total VOC

concentrations, on average. The third profile obtained

with PCA/APCS is similar, but also includes PRC. The

average source contribution estimate for this factor is

6%. The final point of agreement between the PMF,

UNMIX and CMB models is the inclusion of a separate

PRC factor, which contributes from 8% to 12% of total

VOC concentrations.

5. Discussion

The factors contributing most to the total personal

exposure concentrations in NJ and CA and appearing

across multiple models were interpreted as six different

sources or combinations of sources, based on a

qualitative comparison to emissions or exposure profiles

reported in the literature. Precise matches with profiles

reported in the literature were not expected due to

variability in the reported profiles and the fact that

VOCs can undergo chemical degradation from the time

they are emitted. The six most significant sources appear

to be:

* gasoline vapors (Scheff et al., 1991; Rappaport et al.,

1987), automobile exhaust (Scheff et al., 1991; Lin

and Milford, 1994), or ETS (Daisey et al., 1994)

(aromatics, including BNZ, EBZ, and xylenes);
* solvents and insecticides (TCA) (Wallace et al.,

1989);
* drycleaning chemicals (PRC) (Wallace et al., 1989;

Wallace, 1989);
* tap water (TCE) (McKone, 1987);
* deodorizers or mothballs (PDB) (Wallace, 1989);
* building materials and carpeting (higher alkanes and

xylenes) (M�lhave, 1982; Wallace et al., 1987).

Factors corresponding to the first four of these

sources appeared in both data sets. The PDB factor

appeared only in the NJ data. This compound was not

included in the CA analysis due to an inadequate

number of measurements. The factor associated with

building materials and carpeting was only extracted

from the CA data. The alkanes were not measured in the

NJ study. The factor labeled tap water was less

consistent across models than the other major factors.

TCE appeared as the dominant compound in one of the

factors given by PMF and UNMIX for NJ and by PMF

for CA, was present along with TCA and PRC in a

PCA/APCS factor for NJ, and was a significant

component in the tap water profile included in the

CMB model for both CA and NJ.

Each of the four models identified one or two

aromatics factors as the primary contributor to both

the NJ and CA exposure concentrations. For the NJ

data, factors 1PA, 1P, and 1U are dominated by BNZ

while 2PA, 2P, and 2U consist mainly of EBZ and

xylenes. The sums of these two factors from each of

these models are shown in Fig. 9, and are compared

with the automobile exhaust profile (1C) used with the

CMB model for both NJ and CA. The summed

factors extracted from the NJ data are similar to

the CMB profile, and in turn are similar to factors

1PA, 1P and 1U extracted from the CA personal

exposure data. Although the aromatics-dominated

profile used with the CMB model was for automobile

exhaust (Scheff et al., 1991), gasoline vapors (Scheff

et al., 1991; Rappaport et al., 1987) and ETS (Daisey

et al., 1994) also have similar profiles with respect to the

compounds available for use in this study (see Miller

et al., 2002, Fig. 5). Thus it is likely that the aromatics

factors reflect exposure to a combination of aromatics-

dominated sources, contributing from 43% to 53% of

personal exposure to toxic VOCs in NJ, on average, and

from 42% to 50% in CA.

In addition to the aromatics-dominated factors,

another multi-component factor extracted from the

CA data that was relatively consistent across models

appears to be building materials and/or carpeting

profile. CA factors 3P and 3U are similar to CMB

profile 3C, for emissions from carpeting (Wallace et al.,

1987). The dominant compounds on factor 3PA are also

similar, although it uniquely includes a significant

amount of PRC.

Overall, PMF and UNMIX agree especially well for

the NJ data set, with both models extracting six similar

factors. Table 2 shows that the average source contribu-

tion estimates for these two sets of factors are also

similar. For NJ, results from PCA/APCS also compare

reasonably well to those from PMF and UNMIX,

although PCA combines PRC and TCE, which the other

models separate. PCA/APCS also attributes a relatively

high average source contribution to the BNZ-dominated

factor (1PA) and a correspondingly lower contribution

to the second aromatics factor (2PA). The automobile

exhaust profile used in the CMB model appears to be

separated by the other models into two profiles. Their

summed source contribution estimates are about 25%
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higher than the automobile exhaust contribution from

CMB.

The models give less consistent results for personal

exposures in CA than they do for NJ. Profiles similar to

CMB profiles 1C–4C are extracted by PMF and

UNMIX. The average source contribution estimates

match well for three of the four common factors, but

CMB gives a low SCE for the TCA-dominated factor.

Although the factor profiles are similar, source con-

tribution estimates for the first two PCA/APCS factors

appear high compared to the corresponding factor

contributions from the other models. Beyond this, the

CA results from the four models diverge sharply.

There are several reasons why the results obtained

with the different models may disagree. First, exposure

profiles specific to the time period and locations included

in the TEAM and CARB studies were not available in

the literature, so discrepancies were expected between

the input profiles used with CMB and the profiles

extracted by the other models. Some of the VOCs

included in the study undergo decay in the atmosphere,

so the exposure data likely violate the assumption made

in the CMB model that source compositions remain

constant.

The PCA/APCS model differs fundamentally from

the UNMIX and PMF models in not having a non-

negativity constraint. As mentioned above, we limited

the number of factors carried through the PCA/APCS

analysis in order to avoid large negative values in the

factor profiles, with the result that less of the variability

in the data was explained.

PMF, unlike PCA/APCS or UNMIX, utilizes point-

by-point estimates of errors in the data, allowing

downweighting of missing observations that have been

filled in, values that are close to the detection limits, and

outliers. UNMIX provides a relatively coarse means of

downweighting outliers, through two adjustable weight-

ing parameters.

Based on the formulation of the models, and as seen

in the results for the simulated data reported by

Miller et al. (2002), none of the models are expected to

be able to discriminate between sources with similar

compositions. Likewise, UNMIX and PCA may be

confounded by high correlations between sources of

exposure, which could be introduced by common

meteorological factors or the presence of the sources in

the same microenvironments. The results for the

simulated data also suggest that factors extracted by

PMF, PCA and UNMIX that are dominated by a single

compound may reflect a high degree of variability in the

amount of that compound in one or more multi-

component sources, rather than a pure source (Miller

et al., 2002). This may be the case with BNZ and TCE in

the NJ data, for example.

The performance measures reported by the CMB,

PMF, PCA/APCS and UNMIX models are useful for

comparing results obtained with alternative configura-

tions of a given model (e.g., selecting different input

profiles with CMB or different numbers of factors with

PMF, PCA/APCS and UNMIX). Because the models

report different performance measures, however, they

are less useful for cross-model comparisons. In parti-

cular, the current version of UNMIX reports only the

minimum R2 and S/N values for the worst-fit compound

included in the model, but does not provide any measure

of model performance for the other compounds.

Fig. 9. Comparison of aromatics source profiles (mass fractions) from the four models. The CMB input profile is for automobile

exhaust. The sums of the profiles extracted from the NJ data for factors 1PA and 2PA, 1P and 2P, and 1U and 2U are shown for PCA/

APCS, PMF and UNMIX, respectively.
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6. Conclusions

Of the four receptor models compared here, PMF and

UNMIX showed the closest agreement, extracting six

similar factors from the NJ personal exposure data and

four similar factors from the CA data. Between the two,

PMF has the advantage of reporting more complete

information on model performance than the current

version of UNMIX. The lack of a non-negativity

constraint is a significant limitation of both PCA/APCS

and CMB. Nevertheless, results from CMB were useful

in helping to interpret the factors extracted by the other

models.

Across the models, the results suggest that in the late

1980s important sources of personal exposure to toxic

VOCs included an aromatics source resembling auto-

mobile exhaust, gasoline vapors or ETS; a TCA source

such as solvent or insecticide use; a PDB source such as

mothballs; PRC from dry cleaning; and in CA only,

higher alkanes and xylenes from building materials. Tap

water was also tentatively identified as a source of

exposure, but the corresponding profiles and source

contribution estimates differed more across models than

those for the other sources. Source profiles found in the

literature for automobile exhaust, gasoline vapors and

ETS are too similar with respect to the compounds

included in this study to be able to distinguish them.

Since the aromatics-dominated source appears so

significant, future studies of personal exposure to suites

of VOCs should include tracer compounds to help

differentiate between these three sources.
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